
FINAL REPORT

...YVOLUME 5 I FILE COPY
SUMMARY

CLIN 0006

iC)
00

(\1 November 2. 1990

IMACROSTRUCTURE LOGIC ARRAYS

Contract No. DASG60-85-C-0041

Sponsored By

The United States Army Strategic Defense Command

COMPUTER ENGINEERING RESEARCH LABORATORY

Georgia Institute of Technology

Atlanta, Georgia 30332 - 0540

Contract Data Requirements List Item F006

Period Covered: 1985-1990

Type Report: Final

90 11

DISCLAIMER I
I

DISCLAIMER STATEMENT - The views, opinions, and/or
findin s contained in this report are those of the author(s)
and siould not be construed as an official Department of the
Army position, policy, or decision, unless so designated byother official documentation.

DISTRIBUTION CONTROL

(1) DISTRIBUTION STATEMENT - Approved for public release;
distribution is unlimited. 3

(2) This material may be re roduced by or for the U.S.
Government pursuant to t e copyright license under the
clause at DFARS 252.227 - 7013, October 1988. u

I
I
I
I
I
I
I
I
I
II

Pc lassif i ed.UfjIyi (LASSi~i[i(Ar OF i1ii5 rAGE

I Fon Approved
REPORT DOCUMENTATION PAGE O4No 0704 O IR

REPORI SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS
Unclassified

SECURITY CLASSIFICATION AUTH4ORITy 3 DISIriR TJION/AVAILABILITY OF REPORT

DECLASSIFICATION/DOWNGRADING SCHEDULE I)Approved for public release; dti -
Itr ibut ion i s unl imi ted .

PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

NAME OF PERFORMING ORGANIZATION 16b OrFFI(E 5 YMOl 7a NAME OF MONIIORING ORGANIZATION
chool of Electrical Eng. (II rappl, 9ble)
eorgia Tech U.S. Army Strategic Defense Command
ADDRESS (City, State, alid ZIP Code) 7b AO)RF SS (City, State. and ZIP Code)

P.O. Box 1500
i-lanta, Georgia 30332 lildtsvitte, A'L 35807-3801

NAM1E or FUNDING fSPONSORING Rb OFI(E SYMPOL 9 PRO(UREMENT INSTRUMEN IDENTIFICATION NUMBER
ORGANIZAIION

(i aipplicable) DASG60-85-C-004 1
ADDRESS (City. State, and zIr Code) 10 SOURCE OF FUNDING NUMBERS

PRnOrRAM r ROJECT TASK IWORK UNIT
ELEMENT NO NO NO ACCESSION NO

TIILE (0nclude Security Classilfcation)

Macrostructure Logic Arrays - Volume 5 - Summary

PERSONAL AUTHOR(S)
C. 0. A1 ford

a TYPE or REPORT 13b TIMF CoVmFO 14 DATE OF REPORT (Year, Month.Oay) IS PAGE COUNT
Final rROM6Z 85;oLI/2/.9 November 2, 1990 84

SUPPLEMENTARY NOTATION

COSAII CODES Ts SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP Sue-GROUP

ABSTRACT (Continue on revere if necessary and identify by block nuriber)
)lume 5 - Summary 3. Seeker Scene Emulator
Program Overview 3.1 Objectives
1.2 Target/Scene/Seeker Data Generation 3.2 SSE Capabilities
1.3 GN&C Processor 3.3 Advanced SSE
1.4 Software 4. Guidance Navigation & Control
1.5 Digital Emulation Technology Lab Processor
1.6 Parallel Functional Processing 4.1 Objectives
1.7 Payoff 4.2 Capabilities
Parallel Function Processor 5. Software Development
2.1 Objectives 5.1 Objectives
2.2 ?FP CapabiLities 5.2 Capabilities
2.3 VLSI PFP 3.3 Current Status oL

Software Deveiopment con.
P ~l ~it1n 11lllr"fJ 1A V A rf A n il

I T Y
O)f A f11 IIM A C T 1 1 A nfl rI Pm SF~ l)n I Y C LA SsiIFC(A 1 I0)P

(-1 i '(LASSirF'iJitjLi ~i j [J SAf.iE AS rr F LJ il s~ n I P " A SF(I i CLASSJIC;TI;l"
A NA!. F)F .rF r'0PN S;PR1 ,1 JrO,1, ,i L 1' lF r i ittF (1,ril Area Ce.de) 2 r,.2 (. F t

Fnror 1473, JUN 86 rrretr dtr, u ~o, h iri ite SEC URITY CLASSIF'(AtI(rJ (F T !4l PAC(F

T Tl ' .1 '4 ; ,

I

istribution statement continued

)This material may be reproduced by or for the U.S. Government ptirsuiflft to

the copyright license under the clause at DFARS 252.227-7013, October 19,8.

II

I

~I I

II
~I!

A.0. I

. P

FINAL REPORT

VOLUME 5

SUMMARY

CLIN 0006

November 7. 1990

Author

Cecil 0. Alford

COMPUTER ENGINEERING RESEARCH LABORATORY

Georgia Institute of Technology

Atlanta, Georgia 30332 - 0540

Eugene L. Sanders Cecil 0. Alford

USASDC Georgia Tech

Contract Monitor Project Director

Copyright 1990

Georgia Tech Research Corporatio'i

Centennial Research Building

Atlanta, Georgia 30322

TABLE OF CONTENTS

1. PROG RAM O VERVIEW ... I

1.1. Real Tim e Sim ulation and Te ;rng .. I

1.2. Target/Scene/Seeker D ata Generation .. I

1.3. GN & C Processor .. 1

1.4. Softw are ... 1

1.5. Digital Em ulation Technology Laboratory (DETL) ... 2

1.6. Parallel Functional Processing .. 2

1.7. Payoff ... 5

2. PARALLEL FUNCTION PROCESSOR 7

2.1. 6 tjectives ... 7
2.2. PFP Capabilities .. 7

2.2.1. PFP Architecture .. 7

2.2.2. Perform ance ... 9

2.3. VLSIPFP ... 12

3. SEEKER/SCENE EM ULA TOR ... 15

3.1. Objectives 15

3.2. SSE .C a .. 15
3.2.1. /S E Architecture .. 21

3.2.2. SSE Perform ance ... 27

3.3. Advanced SSE ... 27

4. GUIDANCE, NAVIGATION & CONTROL PROCESSOR 32

4.1. Objectives /: 32

4.2. Capabilities 32

4.2.1. Architecture .. 32

4.2.1.1. Data Processor: 1G T-DP ... 35

4.2.1.2. ,-E cutive Processor: GT-EP ... 35

4.2.1.3. Signal Processor: GT-SP .. 37

4.2.2. Perform ance ... 46

5. SOFWARE DEVELOP .ENT ..

5.1. Objectives ... 56

T,",_. --*r " j

5.2. Capabilities ... 56 I
5.2.1. Overview of Software Architecture .. 56

5.2.1.1. User Interface ... 56

5.2.1.2. Compilation and Execution .. 58

5.2.1.3. Operating and M onitoring System .. 58

5.2.1.4. Database and Tool Integration ... 58

5.2.2. Characteristics of Parallel Programming Environments 58

5.2.2.1. Explicit and Implicit Parallelism .. 59

5.2.2.2. Parallelism and Target Parallel M achines ... 59

5.2.2.3. Parallelism and Application Domains .. 59

5.2.2.4. Performance Evaluation and Improvement .. 60

5.2.2.5. Abstract Inform ation Representation .. 60

5.2.2.6 Operating Software and Parallel M achines .. 60 U
5.2.3 Technologies for Parallel Programming Environments 61

5.3 Current Status of the Software Development .. 62

5.4 EXOSIM .. 64

5.4.1 Overview .. 64

5.4.2 Simulation Capabilities ... 64

5.4.2.1 Inertial Measurement Unit (IM U) ... 64

5.4.2.2 Midcourse Guidance and Attitude Control ... 65 I
5.4.2.3 High Fidelity Staring FPA Seeker M odel ... 65

5.4.2.4 Signal Processing .. 67

5.4.2.5 Object Processing ... 67

5.4.2.6 Simulation Structure ... 68

5.4.3 Parallel EXOSIM .. 68

5.4.4 Parallel Ada EXOSIM .. 68

6.0 TECHNOLOGY REFERENCES ... 72 I

7.0 REFERENCES ... 79

I
I
I
I
I

1. PROGRAM OVERVIEW

USASDC Contract DASG60-85-C-0041 was initiated June 28, 1985. The objectives of the
contract were to develop parallel processing technology to support the USASDC EXO program. This
eventually led to four specific areas of research and development. ,

1.1. Real Time Simulation and Testing

The design of new interceptors requires thousands of simulation runs. The Georgia Tech parallel
computer, SPOCK, was explicitly designed to execute such simulations in real time. Further, the
SPOCK computer was designed to support external hardware for real time testing and verification.
SPOCK became the starting point for a development effort which led to the Parallel Function Processor
(PFP).

1.2. Target/Scene/Seeker Data Generation

In order to run a simulation on the PFP it is necessary to have data which represents real targets
in a real background. Further the sensor (IR Focal Plane Array) must be modeled to generate the data in
a realistic manner. This led to the development of the Seeker/Scene Emulator (SSE) as a real time data
input device.

1.3. GN&C Processor

Since the processing requirements for KEW EXO interceptors were becoming much more
demanding, a task was initiated to design a GN&C Processor using the same parallel computing methods
employed in the PFP. An eight processor system was defined, new VLSI chips were designed and
fabricated, leading to a GN&C Processor with exceptional performance.

1.4. Software

Several simulations have been run on the PFP. Currently a 6 DOF EXO Simulation (EXOSIM)
is being translated from a serial Fortran program to parallel Ada. Portions of this simulation are now
running on the PFP.

An extensive Ada development program is underway to produce tools and compilers to support
all the hardware with Ada source code. Compilers for the PFP are already working. Compilers for the
GN&C processor will be completed under another contract.

2 I
1.5. Digital Emulation Technology Laboratory (DETL) I

The four program elements are combined in Figure 1.1 to make up the DETL. All of this work3
was started under the contract and is being continued under USASDC Contract DASG60-89-C-0142.

The following section discusses the parallel functional processing concept which is used as a basis for

system design and programming.

1.6. Parallel Functional Processing 3
The Macrostructure Logic Arrays program is based on the parallel functional processing concept.

This concept implies the direct translation of block diagrams to parallel computing structures. The

concept can be applied at all levels of KEW processing. These include simulation of complete systems

and implementation of guidance and control functions into a G&C processor.

An application example is shown in Figure 1.2. The block diagram which represents a system

model is composed to ten computational blocks. The parallel processing implementation consists of ten 3
processing units and a crossbar switch which interconnects the processors. As shown in the figure, each

physical block is mapped directly onto a processing unit. The processor in then loaded with a program

which represents the mathematical model of the physical block. After all the processing units have been

loaded, a connection pattern is loaded into the sequencer which controls the crossbar switch. The

switching pattern is a direct mapping of the block connections, which exist in the block diagram, onto the

crossbar switch sequencer in the parallel processor implementation. For example, block 3 has outputs to

blocks 4 and 5 and inputs from blocks 2 and 10. When this information is compiled for all the blocks,

the sequencer can set up the necessary transfers between each processor.

After all program loading is completed, the sequencer assumes control of processing and initiates 3
program execution. Each processor solves its equations for a fixed time increment. On completion, the

processor signals the sequencer that data is available for transfer. When the receiving processor is ready

for data, the sequencer invokes a transfer. After all transfers are complete, a new compute cycle begins.

Since the switching network is a full crossbar, several transfers can occur in parallel. This usually limits

the required number of transfer cycles to three or four on each processing step.

The processing concept illustrated in Figure 1.2 is similar when applied to the PFP or to the

GN&C Processor. The three basic ideas of multiple (not necessarily identical) processing units, a

crossbar switch for interconnection and a sequencer for control are used in each implementation.

I
I
I

3

z > >

C-,-

I0~

____ *J 0

w 0
U) IL C)

i0
ICL LuJ

C) I-- D L LC

oc .L..........]

044

< 0
P U)

+ 0-

00
c 1

Q) II

en _i uJ

00

0 -i 0 __

CXL <

T ui
I < <3.

00

L~iflk / 00.i

Li2-

Il

5

Changes are made in the number of r cessors, crossbar switch structure (serialiparallel) and processor

type (fixed point/floating point/special tuiction). The basic structure, as well as the differences, are

discussed in the following sections.

1.7. Payoff

There are three payoffs for the DETL technology. These payoffs are in more exact simulations,

lower testing costs and spin-offs to non-SDI applications.

Simulation and Testing,

The PFP and SSE provide a unique capability to test KEW models, components, and algorithms,

at a level of complexity much greater than existing computer systems. Excluding the gamma event
problem, threats can be generated which contain all the features a KEW interceptor would expect to see.

The ability to generate noise characteristics, large numbers of differing objects, and nonlinear

characteristics for each detector pixel, for large FPAs at reasonably high frame rates is astounding.

Canned scenes can be generated, stored and used as benchmarks for testing algorithms or flight

processors. None of the testing requires cold chambers or any special hardware. Only one interface has

to be built; a connection from the SSE output to the processor input.

When the SSE is coupled to the PFP, closed loop simulation is possible for a complete end-to-

end KEW mission. The KEW model can be rapidly changed to test the effects of various "what if'

conditions. Real components can be inserted into the simulation to replace simulated hardware and

software. All of mis can be done in a design environment, fully under the control of the designer/user.

There is essentially no penalty for additional testing. Hence, more testing and experimertation can be

done to arrive at better solutions and to avoid costly design errors.

Silicon Comoiler Design

The GN&C Processor has been designed using the Genesil silicon compiler. This is the first

KEW processor to take advantage of this cost savings approach to VLSI design. The designs can be used

to follow progression of technology from 1.25 macron to 0.8 to 0.5 micron feature sizes. The designs
can also be used to move from vendor to vendor, including newer rad-hard processes. These compiled

designs will yield large cost benefits in future hardware changes and implementations.

Spin-Offs

It is readily apparent that simulation and testing of KEW models and components is not radicall\

different from many other applications. It is also obvious that other systems use staring arrays to acquire

6'

information which must be processed in a manner not too different from a KEW interceptor. Because the I
technology is broad based, it can be used in many other military systems and some non-military systems.

The key words to look for in an application match are scene generaton, real-time simulation, staring

irray, and signallobject/data processing. Systems which use one or more of these key words, are

candidates for this technology. i

I
I
I
I
I
I
I
I
i
I
1
!
I
I
I

7

[
2. PARALLEL FUNCTION PROCESSOR

2.1. Objectives

A critical KEW/SDIO issue is real-time testing of interceptor hardware and software. Testing

has to support Focal Plane Array Seekers, GN&C Processors and flight software. The test facility must

have capability for parametric studies, large volume data analysis and simple hardware interfaces.

System models must be processed in real time with no sacrifice in fidelity. All of the software must be

Ada Compatible.

Current real-time simulation hardware fails to meet these requirements. The best computers will

execute the required models at less than 100 hertz. In order to achieve accurate real-time results a 2000

hertz bandwidth is necessary. This bandwidth has to be achieved while executing nonlinear and

transcendental functions and providing a minimum of eight high speed data channels for hardware under

test. The number of ordinary differential equations needed for a KEW 6 DOF model is 60 to 120. All of

these requirements are met in the PFP.

2.2. PFP Capabilities

The Parallel Function Processor was designed to meet all requirements of real-time simulation

and testing. The computer features 64 processors connected by two crossbar switches. Special purpose

computing modules have been designed for hardware interfacing, nonlinear functions and transcendental

functions. Interfaces to the SSE and GN&C Processor are in progress. PFP software is being developed

to run on a SUN 386i host computer under the UNIX operating system. Since each processor has a

throughput of 8 MFLOPS, the system throughput is greater than 480 MFLOPS. Further, additional units

can be interconnected to double or triple the number of processors and the resulting throughput.

2.2.1. PFP Architecture

As shown in Figure 2.1, one PFP unit contains 32 processors, a crossbar switch, a host computer

and peripherals to support the host. Mapping of functions from the simulation block diagram to the

processors is identical to the example in Sectionl.6. One-to-one functional mapping is a distinct

advantage in debugging hardware or software problems. If an engineer wishes to change a parameter in

the Boost Autopilot, it is a simple matter to select the appropriate processor which contains the Boost

Autopilot model, examine the code, change the parameter, compile the new code and execute the new

simulation. Blocks can be added or deleted by adding or deleting processors. The block connections are
mapped into the crossbar switch connection code. To delete a block only requires changes in the

8

0

Wt 0 0

QZE 0 LLE
Z 0L - Z1 1

<0~ m 0
cLZ A iZ LU 0

0 <0zL LU-: U 31
0 /,0 7 zLJ "1

Q-0 D _. < LU << < U L-

< U. <

-j -jm !--LU

Up of <
ii i:c C

Dz Q ~- 5 Q

___ 0_ z ____ zI . :

a-<ZZ00 - -F

U-'1 u L< L) L

-0_ _ _ WI 9 2 -

CA w Az Z A U
U-00'1OU n L0 U) a Z

AL UL jF

E r _ __ _ _)L L < L a

9

connections for those processors which sent data to or received data from the designated processor
(block). The crossbar code is then modified, compiled, loaded and ready to run.

The unit shown in Figure 2.1 only represents one-half of a PFP. Another unit contains 32

processors and a crossbar switch. The same host is used for both units. These two units can be run

separately, solving two independent problems, or they can be interconnected to solve one very large
problems. Interconnection only requires the replacement of one processor on each unit with an Array

Interconnect Board. The Array Interconnect Boards are tied together with a data cable which transfers

data between any of the processors in one unit to any of the processors in the other unit. More than one
Array Interconnect Board set can be used to increase the data rate between the two units.

A typical PFP Hardware Description is given in Figure 2.2. New items which appear are
piggyback function boards and analog I/O boards. The function boards are special purpose auxiliary

boards to increase processing speed when executing transcendental functions, and table look-ups. Most

simulations have a large number of transcendental functions, 10 or more single variable table look-ups,
and 6 or more two variable table look-ups. Analog 1/0 boards are useful to connect external hardware

which requires analog input signals and delivers analog output signals. Each Analog 1/0 board provides

4 input and 4 output channels.

2.2.2. Performance

Several processing elements have been constructed for the PFP. Each of these has been
benchmarked solving a second order differential equation using a fourth order Runge-Kutta method. The
step size is fixed at 50 steps for the highest frequency that can be solved in real-time. If fmax is the

bandwidth in hertz and TSTEP is the real-time integration step size in seconds, then

fmax = 11(50 * TSTEP). (1.1)

Results for this benchmark are shown in Figure 2.3. Five PFP processing elements are

benchmarked for comparison. The iSBC86/12 is an old processor typical of IBM PC computers. The

iSBC 286/12 is typical of PC/AT type computers and the iSBC 386/12 compares to newer PC type

machines. The INMOS T800 is a single chip "Transputer" which is on a board containing four

processors. This is a very high performance processing element and is used in other program tasks. The
Georgia Tech designed GT-FPP/3, floating point processor, is the same size as the iSBC boards, but uses

different technology and a different architecture. This board serves as a basis for the GN&C architecture.

One shortcoming of this board is a rather small memory. Additional memory modules have been
designed as piggyback boards for this processor. This benchmark does not use any nonlinear or

transcendental functions which severely reduces the bandwidth. However, the GT-FPP/3 has an auxiliary

function processor board to assist in these calculations, and is much faster than the other processors for

02

w

U) u C)
LUL

0 -1

z

I 0

Z LZ;Z _oo 13 1

a (9 1 -a
zL~~ 2- Clt<LL

11 O *n Lu Uf) C\JI
~ema 5a < << < z 0

p- (D Lf) U) cc -

Ci C) 0 <

w U) u u Z
z aw 00 o ZOui I

11

uJu

0 C10

u-J

UJ- - co

F- LLJ

U __ __

LUU 0

LU L LUJ

> a
ZU Z

0 -J I--

U) Uf 0JO

LU - - -

u 00 00 0o< <zu

~0 (DU ~
53 00 '0f) 0

70 0i

8U Q
a.z 0U ZL U

' 0 0000

<) _E a: r

0 _0 CC) 0 nt iL

0 04
0 0 f2S

ui co o C142 Q51

12 3
problems of this type. The benchmark clearly demonstrates the ability of the GT-FPP/3 to meet the i
computing requirements.Another benchmark, comparing the PFP to well known supercomputers is

shown in Figure 2.4. This benchmark is based on published computing times for individual instructions I
for each computer type. The benchmark problem is again the solution of a set of linear ordinary
differential equations. In this case a fourth order Runge-Kutta method is used with a step size of 20

microseconds. This represents 50 steps for at a bandwidth of 1000 hertz. The computation speed of each

computer was evaluated to determine how many equations could be solved with this step size in real-

time. A typical 3-DOF simulation requires around 50 such equations while a 6-DOF model will require

more than 120. The results in Figure 2.4 are for linear equations. No penalty factor has been inserted for

transcendental or nonlinear functions. Note the supercomputers are able to use vector chaining for linear 3
problems but are reduced to scalar performance as nonlinear elements are added. Thus, a realistic

comparison, solving a real 6-DOF model would show a reduced performance for the supercomputers but

little degradation for the PEP.

2.3. VLSI Pi P 3
A newer design for the PFP is underway. This design is based on the current PFP, but uses VLSI

designs to implement the crossbar in a more compact manner. Sixty-four processors will be connected I
using one Fully Connected Switch. The host computer will be a SUN running the UNIX operating

system. The processing elements will be based on the Intel i860 processor. Expected performance for 5
this computer will be a sustained 500 MFLOPS with a peak rate exceeding 2500 MFLOPS. Cabinet size,

as shown in Figure 2.5, is 48" x 22" x 26". This system design is continuing under USASDC Contract

DASG6O-89-C-0 142.

I
I
I
I
I
I
I
I

13

0

LJJ

z
___Le_ 0

o-. 0

z
0~LU

0a

C.,

04~

0
LL~

-

> (NL

LLU-

C.,L

< LL

8 W

SN0I1vfl3 1VIIN~dJHO :i0 d39AVflN (J
LL

0 0

(Sdo HvJ
1Nini~diflo3m Ifl~~d 11~cJ e NISS30O Jd

14 3 I
0

z >

Q-J

00

z U

x5

0

LUU
CJ

IL

00

D:

0 0J
z LU

< o~
oL 0o

w.U - x

_, II

20 >-
Cr or

,6 L-u r

15

3. SEEKER/SCENE EMULATOR

3.1. Objectives

The SSE is to be used as an input device to 6-DOF simulations. Since it will model the staring

array seeker it must be capable of generating real-time data, at the pixel level. The driving requirements
for data are traceability to the Phase One Threat Scene (POTS) which requires the use of OSC threat
tapes. in addition, the background data must include the effects of Operation In a Nuclear Environment

(OPINE). This requires accurate modeling of redout and debris gamma.

The seeker to be modeled is a 128 x 128 staring array with non-uniformity characteristics on each
pixel. Frame rates are to vary from 0 to 100 frames/second. Pixel data is to reflect the effects of A/D
conversion. Signal processing algorithms such as non-uniformity correction and thresholding are to be
available for use when required.

The architecture must support more than one seeker model. While it is to be used in connection
with the LATS and LETS programs, these are not the only end uses. Hence any staring array seeker

model should be a candidate for use as a data generation model.

Threat models must cover all types; targets, decoys, and objects. Further, the number of objects
in the Field-of-View (FOV) should be virtually unlimited. If real testing is to be done on GN&C
processors it must be possible to generate realistic data for large numbers of objects at real-time rates.

3.2. SSE Capabilities

The Seeker/Scene Emulator has been designed to meet all the objectives stated in Section 3.1.
Some of the nuclear modeling needs to be improved, multi-spectral capability needs to be added and
more noise sources should be used. These features are reserved for a later upgrade.

The current SSE can deliver in real-time the features shown in Figure 3.1. The most important is
a scalable design which can be extended to give higher frame rates and more frames of data.

Data is modeled over a 128 x 128 grid. Electrons are generated as a function of intensity for
several effects. The models present in the SSE data are (1) fixed-pattern noise, (2) nuclear effects, (3)
FPA/seeker and (4) objects. Each of these can be modeled with a wide variety of parameters. The list
for each is given in Figures 3.2 - 3.5. This is an enormous capability when coupled with the ability to do
individual pixel data construction at real-time rates of 128 frames/second.

16

0 --

c0

tn 4-

C,

00 u
C(9

o000
+-

.0 Y

~.)UE

17

clD

GLL

- C)

18

C-

C/)

4-

00

04 014--

*- cl 0 Cs

Z 0 l"

19

-4-
-

~4E

4-

00

IO

0 C13

CYDz

cl)
a) 0)

cl

c C ! 0 0 0 * 4 0

20

4.1 4b 4-
IA I

dig

C!3U
cnU

cn cl

V)~~ u5)u

o ~ 0 *-~ O

4.4
U t

21

3.2.1. SSE Architecture

All data is generated off-line. A simulation trajectory is run from end-to-end in a non-real-time

mode. The seeker line-of-sight (LOS) and field of view (FOV) are used to specify the background area

and objects. The background data is separated from the object data for each frame. In the real-time

simulation, the PFP runs the same simulation and the same trajectory. The line-of-sight may vary

slightly from the original non-real-time run. To compensate for this shift in LOS the background data is

fixed to the new LOS but the target data is moved across the background data to reflect the change in

LOS from the initial run to the real-time run.

In Figure 3.6 each object is mapped onto a 128 x 128 array using the LOS from the 6-DOF

simulation and optical parameters from the seeker. Each object pixel is expanded into a 4 x 4 array to

develop high resolution data for the object. Object intensity at the dector pixel is used to generate

electrons by combining the factors listed in Figures 3.2 - 3.5. The object data is mapped onto a frame

image. This data is converted to the frequency domain using a 2D-FFT. The converted image data is

multiplied by a Modulation Transfer Function to account for seeker optical parameters. The resulting

image, after an inverse transform, is a single wavelength, 128 x 128 object image, which is fully

diffracted and aberrated.

In operation the sequence of events proceeds as shown in Figure 3.7. Data is generated off-line

using (1) a seeker model, (2) an engagement scenario, and (3) a 6-DOF simulation. The background and

object data are compiled for each frame of flight. When the data is loaded into the SSE and played into

the signal/data processor and the PFP running the 6-DOF simulation, a new line of sight is generated.

This data is sent to the SSE to correct for the original LOS by moving the objects over the background.

The computational requirements are illustrated in Figure 3.8. This figure ignores all shifting

operations and merely gives floating point operations to accomplish pixel output calculations. The

output is a fixed point 16 bit value which emulates most A/D converters for staring arrays.

The SSE design parameters are shown in Figure 3.9. The major items are the large storage and

the very large data rates required for the objects. This is accentuated by the sub-pixel resolution used to

enhance target fidelity.

The architecture shown in Figure 3.10 has been designed, built and tested to meet all

requirements of Figure 3.9. The objects are stored in a distributed memory on the left of the figure in the

section designated object formatter. Frames of data are rolled into a bank of Transputer processors. LOS

information is used to shift the frame data in two dimensions.

22 1

0

z3

~ 0

>) C)

,-H .()IF

0 1)

CC) I0 c F C: w

0 0 EcD 0 £

23

Cl) c,:

L.. E) cm- w c

CU. a)4- C
Q .0- 4.....

ca a) 04- U4
oo a:V

CU E cn0 x -
E .2 E U -

4 - -- L0 c Q
o0 0). - 0-
0 C CL .

4- C1 0 U)oc
*0Z
(1) m0 0 o (0 E
T- 00 C) %- 0 .

a) CLO ± .
75 -r. *._ >1 H)

: 3 075C

_ _ _ _ _ _U)
C

a) I 0
la) I C 4

(1) 2
0 En;a

S 7 () C
Ci: CZ T-U)

0 a) a

cIC
S U)

CD, C:

-cE (nU
CD (L

cE as ~C

(aLJ UIw
cm0)c x M E

(n W LU-C

24

0

0
LL

zI

C0 s

LL< W

C C)V

og

LO E

75)

0 c 01
o

6)l

C4 o)

04 ';:) 0

~-0'

o -oFT= (Y
Fl=

25

C44

000
0 U)

EH

ci

(I)

~u H z C!)

26

r ez'oopalul IndlnO15
D LL.Dt I0

0 C
uo!ioinw3 (1/V

0 0

x~ 0 (D

LU F

-0 n 0
00 00 D0a 0

WmIGI
TU C U C

0 C/)

0 aIOMG aUqlM 0

C) o)

a) 0DL
%_ _- %- '_ %- a.

a 0 _ 0 0 0aF-~~~ LLLL lL
0) LU

0 0-

~ a)
0U

27

While this operation takes place, background data is rolled out of a separate distributed memory into the
data combiner. The object data and background data are combined and then output to the A/D model.
After "A/D conversion", 16-bit fixed point data is output for each pixel in the frame.

3.2.2. SSE Performance

The SSE system is shown in Figure 3.11. In addition to the object generator and background

generator there is a (1) Microvax II, (2) PC-AT based host, (3) image processing, (4) image display, and
(5) and interface to the PFP. These peripherals are detailed in Figure 3.12. All programming has been
done in OCCAM, but compilers exist for Fortran, Pascal and Ada. Georgia Tech is currently running

tests on the Ada compiler.

These components have been built and tested, operating in an open-loop and closed-loop
configuration. The open-loop configuration shown in Figure 3.13, demonstrated 128 x 128 emulation
capability at 128 frames per second. The display cannot be updated at this rate, and was refreshed at a
reduced rate. The SSE has been connected to the PFP in a closed-loop demonstration. The only

remaining interface which has not been demonstrated is the connection to a Signal Processor. This is on-

going under USASDC Contract No. DASG60-89-C-0142

3.3. Advanced SSE

Two major problems exist with the current implementation of the SSE system. The first is the
requirement to generate data off-line. This requires very long run times (in excess of 8 hours) on the
CRAY computer. The second is the lack of a true closed loop operation. The ASSE will overcome these

problems and add new features shown in Figure 3.14 to increase the capability.

The first major step is a parallel implementation of the OSC tape or the FASTSIG version. This

will give a fast, direct way to generate data without resorting to off-line supercomputers. Performance

will be higher and turn-around time much quicker.

The second major step is to revise the computational procedure to permit true closed-loop

operation. When this is done new features can be added to more accurately represent the seeker, objects
and background. This will also provide multi-spectral capability for a single simulation run which will

be important in testing more robust seekers and signal processors.

28

0

IL
LUz

00

zW

C/)
09

LL O 0 caNOa

mj 00LL H

z IL
U
C/); 7

w
U) I

U Q
:D
01

29

0

0 HC3

0

000 -5 U,-5L

m _U

U * C

0 C/)

0 E 00~ 0cy'

cj~ v. ~ 0 ~.)

30

UlU

oc

LU 0 A0 0
0 0

0 0 0

cn X 0
<L~f Go <
'-, - 0.)

0i 3i
c~tLOA w.

ul Cl) CL0

w/C Cl)

LLI a
2 -1 p-

__ w 3I-

Cl)

21J

CIO

L 0o 01
LU~ _

~~uQ

Z II

31

a.

z r. 0

ri0 0 Cl
a.)l r. 0 ~)

C) .C)

o C4-
0 Q0-

ci')

32 !
I

4. GUIDANCE, NAVIGATION & CONTROL PROCESSOR

4.1. Objectives I

A review of GN&C Processor requirements for KEW interceptors led to the following objectives 3
for this task:

Modular, ,:xpandable design i
VLSI chip designs based on a Silicon Compiler

Clear path to VHSIC technology and to rad-hard VLSI technology

Capability to support KEW mission over the next 20 years 3
These objectives were translated into a specific processor design composed of three processor

types; signal processor, data processor and executive processor. The signal processor was further divided

into pixel processing and object processing. Objectives for each processing mode were set as shown in

Figure 4.1. While a single color FPA is implied by these objectives, the modular structure makes the

addition of more sensors relatively straightforward. This will become apparent in Section 4.2. 3
4.2. Capabilities 5

The GN&C processor developed by Georgia tech is a parallel processor architecture that provides

direct support for application of the functional processing concept to the guidance, navigation, and i

control of Kinetic Energy Weapons (KEW) interceptors. Based on the computing requirements for the

guidance, navigation, and control of KEW interceptors, the GN&C processor is functionally decomposed 3
into three general classes of processor architectures: data processor (GT-DP), signal processor (GT-SP),

and executive processor (GT-EP). A fully-connected 8-point crossbar switch is used to connect the

various processor modules in a closely coupled interconnection network. Each processing module is I
tailored to the unique computa-onal requirements of each functional block. The result is a parallel

processing system with a computational throughput that meets the most stringent KEW requirements. 1

The architecture of the GN&C processor and its capabilities are presented in the following sections.

4.2.1. Architecture 3
A modular, parallel architecture was chosen to meet the processing requirements. The

architecture, shown in Figure 4.2, provides a processing throughput range of 9:1. Processors, of differing

types, can be added to the system from a minimum of one up to a maximum of 9. In addition the signal

processor can be selected or not selected. If selected the minimum configuration is one processor plus 3
the signal processor.

33

LUJ

LUJ

C')oL 0U)
0

0 0

z

c.Jo (9
zU z-z

00

of (9 c

~ a- 0 z
ULI Lii(

L0"' -x 0. 0.zLo 0ZZJ < Uo 0 P= LU
<w 0

cl, ~a I0 LL- uLLJ~~ Z
uj CC,, Uc -0~<< 0 0 - 00 Z

CL wTO- < QD Q 03
X C c LC> CL Z CLal)

0 -

34

CL Lu
II

... L U

Fz t

C/)
C/)

9(9

0U

ZZw

135

4.2.1.1. Data Processor: GT-DP

The data processor is used to perform numerically intensive tasks for guidance, navigation, and

control of the KEW interceptor. This type of computation is floating-point intensive and requires very

high scalar throughput. These computational tasks do not require large amounts of instruction and data

memory (less than I k bytes). The Georgia Tech GT-DP processor was designed to meet these

requirements. Four GT-DP processors are shown in Figure 4.2, but this number can be increased or

decreased to meet the GN&C data processing needs.

As shown in Figure 4.3 the GT-DP processor consists of four functional blocks: Instruction

Control, Data Control, Arithmetic Control, and Communication Control. The In, truction Control Unit

(GT-VSEQ) is responsible for the generation of instruction addresses. It receives stL. s flags from the

Arithmetic Control Unit and appropriately determines the next instruction addresses. It also facilitates

branch-lookahead for efficient pipeline arithmetic instruction execution.

In each computing cycle, the Data Control Unit (GT-VDR) supplies two operands to the

Arithmetic control unit. In addition, it receives a result form the Arithmetic Control Unit for storage.

Three addressing modes are supported: direct, indexing, and post-indexing. The Arithmetic Control Unit

is used to perform the actual data computation. Three data types are supported: floating-point, fixed-

point, and bit-field. The Arithmetic Control Unit operates in threz pipeline stages: 1 stage for operand

fetches, I stage for data computation, and 1 stage for a result store. An automatic operand-dependency

scheme to control the internal feedback paths in the Arithmetic Control Unit, and branch-look-ahead
facility in the Instruction Control Unit, enable the GT-DP processor to execute scalar computations

efficiently.

The Communication Control Unit designated as the GT-VSNI is used to control the

communication between the GT-DP processor and other processor modules connected to an 8-point fully-

connected network. The GT-VSNI chip consists of two pairs of 32-level deep FIFOs. One pair of FIFOs

is used to communicate with other processors through the crossbar network. Another pair is used to

directly communicate with the executive processor. An 8-point fully-connected crossbar switch enables

multiple data processors to effectively exchange data and state variables. The switching matrix chip

designated as the GT-VSM8 is designed to directly interface with the GT-VSN-I chip. It provides 8 input

ports and 8 output ports to connect up to 8 GT-VSNI chips. All processor modules communicate with

the network through the GT-VSNI chip.

4.2.1.2. Executive Processor: GT-EP

The executive processor provides overall executive control for the GN&C prccc:;sor. Among tUie

tasks to be executed by the cxccutive proccssor are initialization)i the GT-CP and CT-SP ?roccss rs,

36

I U
U

z
u 0

010

Q) 4-0

110

00 I
C/)

4- UT
I 0

2~~ D x2

0 C: D
CD a)% IU0Q 000

0 !L) I
L----------------------------

rzz LI
01I

37

overal system consistency checks, flight phase/mode control, target tracking, and interfacing with other

devices such as the IMU and control valves. To perform these executive functions, the GT-EP processor
needs to have access to considerably larger amounts of instruction and data memory than the GT-DP

processor. In addition, the GT-EP processor must handle real-time tasks and event scheduling in which
fast interrupt response capability is critical. Furthermore, the GT-EP is designed to meet the Object

Processing requirements. A total of 5 GT-EP processors (shown in Figure 4.2) are used on the Georgia
Tech GN&C processor system: 1 as the executive processor, I as an I/O processor, and 3 as Object

Processor.

As shown in Figure 4.4, the GT-EP processor consists of six functional units: instruction
memory, data memory, instruction address generation, data address generation, arithmetic logic unit, and

network interface. The arithmetic logic unit uses the GT-VFPU chip developed for the GT-DP processor.

The network interface uses the GT-VSNI chip developed for the GT-DP processor.

The primary function of the GT-VIAG chip is to generate addresses for the instruction memory.

In addition, it provides an opcode field to control signals to the GT-VFPU fixed/floating point arithmetic
logic unit. For I/O functions, the GT-EP processor can directly access 16 input and output devices. Four
of the 16 channels are reserved for asynchronous devices. The other 12 channels are used with

synchronous devices.

The GT-VDAG chip is used to generate two address fields for data/operand fetches and one
address field for data/result store. The chip supports post-index addressing for accessing arrays with
constant strides at a rate of one cycle per element of the array. Relative addressing is supported to ease

the access of local variables and parameters of procedures that are recursive. An automatic operand-
dependency check is used in the GT-VDAG to alleviate the need to insert nops at the end of every basic

program block associated with a three-stage pipelined ALU such as the GT-VFPU chip. The GT-VDAG
chip supports a data space of 64 MW.

4.2.1.3. Signal Processor: GT-SP

The signal processor was developed to process infrared images for a focal plane array (FPA) with

128 x 128 pixel resolution at a rate of 100 frames per second. Each pixel is assumed to have 12-bit
resolution with a dynamic range of 16 bits. The signal processor performs various forms of filtering

operations on the pixel data before clustering them into objects for target tracking and discrimination.
The signal processor is decomposed into 8 functional blocks for VLSI implementation. The first

functional block is the FPA interface (GT-VFPA) which is used to link the signal processor and the FPA.
The FPA has not been specified. As a result this functional block is not defined.

The second block is the GT-VGS which is used to address probiems associated with gamma

suppression. In order to tilter out gamma srike:-:. the GT-VGS needs Lo nrc,ss ." rom the P

at a ver, high frmune rate i ",()00 irames ?ocr zecond). Camma -piies arc r,.... . '! ". ..

38
cu u

r.c
0c0.0

00

0~

0A 0b. 0-

~~C C\2 0)~ -
a)) u ,.o 000. - ,

0-4 ~ ~ a _ 0t D--
C\2 L) O CD x)
m ' C\2- q- E- U) V) U) M

C,

0 0~

co DL

0 .0CO

39

exceed a certain threshold. Pixels that fall below the gamma spike threshold are accumulated. Pixels

that exceed the gamma spike threshold are suppressed (value set to zero). At a lower frame rate (100

frames per second), each-pixel is represented by the accumulated pixel value compensated by adding the

number of pixels exceeding the gamma spike threshold multiplied by the average value of the gamma-

spike-free pixels.

The third functional block, GT-VNUC, is used to compensate nonlinear detector characteristics

in the FPA. The response of each detector is compensated with 4 piecewise linear segments. During

calibration, the FPA is irradiated with five known sources. As illustrated in Figure 4.5, based on the FPA

response, 4 linear segments are constructed for each pixel. During normal operation, each pixel value is

mapped from one of the four linear segments to a common desired response.

The fourth functional block is the GT-VTF which performs time averaging of pixel values across

frames. The GT-VTF is used reduce random noise across frames as well as smearing of images due to a

jittering motion on the FPA. The GT-VTF is implemented as a forth order temporal filter that makes use

of pixel values from the previous four frames. Eight coefficients in the GT-VTF can be programmed

from a host port to achieve a desired filter response. Figure 4.6 illustrates the filtering operation of the

GT-VTF.

The fifth functional block is the GT-VSF 9-point spatial filter. The GT-VSF performs filtering

operations based on the pixel value and that of its immediate eight surrounding pixels. The GT-VSF can

be used to reduce the effects of spatial noise as well as to enhance/reduce the contrast of images. Figure

4.7 illustrates the functionality of the GT-VSF.

The sixth functional block, GT-VTHR, is used to suppress noise by cutting out pixels that exceed

a constant or calculated threshold. Three types of threshold&,i are supported: simple, adjusted, and

adaptive. Simple thresholding uses a constant lower threshold and fixed upper threshold set by the host.

Adjusted thresholding allows the lower threshold value to be dynamically adjusted according to the

number of pixels passed by the GT-VTHR on the previous frame. Finally, adaptive thresholding

computes the lower threshold based on a statistical average of the 8 pixels which surround the pixel under

evaluation. The three thresholding modes of the GT-VTHR are illustrated in Figure 4.8.

The seventh functional block is GT-VCLS. As illustrated in Figure 4.9, the GT-VCLS groups

adjacent pixels with non-zero intensity into clusters. Two non-zero pixels are assigned to a cluster if the

distance between them is no more than 1. The diagonal distance between two pixels is considered a 1.

Each cluster is tagged and merged with other clusters when two pixels, one from each cluster, touch.

The last functional block of the signal processor is the GT-VCTR controiding chip. The

statistical infbrmation of each cluster frcm GT-VCLS is computed by the GT-VCTR. As shown in

F;Iure 4.10. the total intcnsitv. the intensity .entroid. the area Atoual number of pixes), and the ara

4O

-,0..

+5 I
I 0v- Vi

CUU

C", Col.0- -0 z)
Cu

I
0 ,

_L 004

x oo 0
cu

o 0~Q

II7 -30~ 0

o z I
S.- gU2x ©

E

00

-° II

cc
I

v (D
E

0 'I ±O
E0

7U
m C\2 (o

CL*

ii <DL
C5±

41 Lo

I X z

O 00L~

o) - 5

-- '

N \ C\2• -

.. a* v- 0 I-

X * *

00 __2I o

,* H-,

E " oLL

H-
C\2 >

m0

(D
-J D0

E 0002 50

m7 L.

r12)C/242

J I

U U
cc co~-II

S00 IS4 *o
00

.1l

Q; r

- LL

0) V a",

S...-I

+. ++
7, -CY wL

r 0 ±

C\2 x u _ I Z

-- -a.) -- -- -

- - - - - - - -

-- -o -
-- -~ -) - ~ -+ -. -I

-- -~ -/ -I

- -) -4 -~ --I

43

x9
V0

v
0Q

0. o

- w01

to 02 c. 0
o. E

U 0 2 0 m-

CC\

M 00
*

0. -1 c 4

-

(9
E - ~ 11 110

-3
Xf..

.
0 2

FL 0

02C\0

00 U
6 cu

02
0.

*-4j~0.. *00

02r

ccO

.8 0 a -

> m

L.. a,"

< 'j~
L

-j

CL~

rn - LL

0 °
,- .- - I

* CO Q.) 0

cu. ~f U l I

0.

_W X >' C

V - 0) Z_) 0 5) N m

! I A~ 0.. I

__j 0

- -D

'0 t.~0 0 (na)
-~.i0 a) 0

"a a CO . a cuo -.

. 4',-, .- _ -(.. .- I,.). ", - ". . . - . ; ,

L .I-I l _) -I. J J L . *..I 1. . S Jo l L , x -.~ ~ ~ .- d

cu ZC1. .) 0) 0

,- C\ x . m 1 0"

'0 *- MD.4

I

.44k U'.. C.aJA Ut 446- 01

1' L 7 --- -YJ '- C , %.

L' L I L AL U

I, r r

1~ ~ '4-,

* 2 i P. , ' 2 1 L

j I LU
_7I

45

cuv

cu 00

CL) -CL.

LL

Ca -:

oc

cu cu2

cu

. . , ,L L LL L _,

~ - J I L~ I .-

S -- - - - - - - -,- - - - - - - -

-o t a
-. ~C Ca . ,;s i, , , ,.._ ,. , '

-

,,I. , _ .,; .,.., -w [
, -,.. . -, ,- - , , , '- 0L

r(

46

centroid of each cluster are calculated. Each finished cluster is sent to the object processor for target I
acquisition, tracking, and discrimination.

4.2.2. Performance

The operating and physical characteristics of the Georgia Tech GN&C processor are based on 3
VLSI designs using the Genesil silicon compiler. The designs utilize the National Semiconductor 1.25

micron CMOS process and the Hewlett Packard 1.0 micron CMOS process.

Each GT-DP processor consists of 4 VLSI chips. The die size of each chip is shown in Figure

4.11. At an operating speed of 6.6 Mhz and a power consumption of 5.68 Watts, each GT-DP processor 3
is capable of executing 6.6 MFLOPS. Using General Electric High-Density Interconnect (HDI) hybrid

packaging technology, the GT-DP processor can be packaged in a 1" x 1" x 0.2" space [39]. Assuming

that the hybrid board has an equivalent weight density of 4 ounces per square foot copper foil, each GT-

DP processor would weigh approximately 80 grams.

The GT-DP processor contains two I/O ports. One of the I/O ports is used for direct

communication with the executive processor and has a bandwidth of 40 Megabits per second (Mbps).

The second I/O port has a bandwidth of 40 Mbps and is used for parallel processing applications. The I
two I/O ports combined, provide an I/O bandwidth of 80 Mbps with a total of 36 1/0 pins for the GT-DP

processor.

The GT-EP executive processor consists of four VLSI chips (GT-VIAG, GT-VDAG, GT-VFPU,

and GT-VSNI) and the necessary memory chips for the instruction and data memories. The number of

chips required for the instruction memory depends on the amount of instruction and data memory used

with the GT-EP processor. In a typical configuration with 8k of instruction and data memory using off-

the-shelf 8kx8 memory chips, the number of memory chips required is 8 for the data memory and 11 for

the instruction memory. Assuming that each memory chip is 280 x 280 mil2 , using the GE HDI

packaging technology, 8 memory dies can be placed on a single I" x 1" 0.2" hybrid circuit board. A I
second board can be used to hold another nine memory chips. The GT-VIAG and GT-VDAG VLSI

chips are approximately 400 x 400 mi12. The two chips and an additional memory die can be packaged 3
on a third hybrid board. The total package size for the GT-EP executive processor with 8k of instruction

memory and 8k of data memory will be 1" x 1" x 0.8". Each memory chip consumes about 0.15 Watts

and each of the two VLSI chips consumes approximately 1.0 Watts. The total power consumption for I
the GT-EP package is 7.967 Watts with a performance throughput of 10 MFLOPS. The 110 bandwidth

of theCGT-EP processor is 640 Mbps. The package weighs approximately 320 grams. The characteristics 3
of the GT-EP processor are summarized in Figure 4.12.

I
I
I

47

0

V)I __

0
w

~ 0

CC)

-- L

0) (9
V)

n LO - n, 0

x x x xDC\2 c-i 0
Cr U")-

48I

0;
I)

(4

00

= =' : . 1

C: C c oo ro- o Cd
0-

C~I
U2 u)

49

The GT-SP processor requires 7 custon VLSI chips and 36 off-the-shelf 8k x 8 memory chips. The

physical and operating charactistics of the chips are shown in Figure 4.13. Figure 4.14 shows the

packaging loyout of processor. The number of MOPS in Figure 4.13 is based on a frame rate of 10,000

for the GT-VGS gamma suppression chip and 100 for the others. The GT-VSF, GT-VTHR, GT-VCLS,

and GT-VCTR chips are capable of operationg at 200 frames per second which effectively doubles the

MOPS figures for the chips. The total throughput for the Georgia Tech GT-VSP is in excess of 969

MOPS. The only support chips required for processor are memory chips for GT-VNUC and GT-VTF.

The GT-VNUC requires twenty 8k x 8 RAM chips and the GT-VTF requires sixteen 8 x 8 RAM chips.

Each of the RAM chips consumes approximately 0.15 Watts. The total power consumption for

processor is 28.6 Watts. The front-end of the GT-SP processor has sixteen GT-VGS chips which process

pixel data at 10,000 frames per second. At this rate each GT-VGS chip provides a bandwidth of 163.8

Mbps with a total 2,261 Mbps for the 16 GT-VGS chips. The back-end of the GT-SP processor has two

GT-VCTR chips which provide cluster information for the object processor. The clustering chips are

capable of handling a maximum of 64 x 64 = 4096 clusters. Each cluster contains 78 bits of information:

area (20 bits), x-coordinate centroid (7 bits), y-coordinate centroid (7 bits), intensity (30 bits), x-intensity

centroid (7 bits), and y-intensity centroid (7 bits). At 100 frames per second, the back-end of processor

has an I/O bandwidth of 100 x 64 x 64 x 78 = 32 Mbps.

The GT-VGS chips can be packaged in four " x 1 x 0.2" hybrid boards. The GT-VNUC with

its supporting memory chips requires three boards. The 36 memory chips required for the GT-VNUC

and GT-VTF can be packaged in four boards. The GT-VNUC, GT-VTF, GT-VTHR, and GT-VSF can

be packaged in one hybrid board. Lastly, the GT-VCLS and two GT-VCTR chips can be packaged in

another hybrid board. The total number of hybrid boards required for the GT-SP processor is ten with a

combined board space of I" x I" x 2".

The GT-VSM8 is an 8 x 8 crossbar network with 8 input ports and 8 output ports for data

transfer between the various processing units as shown in Figure 4.2. Each port has a bandwidth of 20

Mbps for a total of 320 Mbps for the GT-VSM8 chip. The GT-VSM8 has a die size of 329 x 340 mil 2

and consumes 0.8 Watts of power. It can be packaged in a l"xl"xO.2" board. The characteristics of the

network chip are shown in Figure 4.15.

The parallel processor architecture shown in Figure 4.2 uses four GT-DP processors, five GT-EP

processors (I as the executive processcr, I as the 1/O processor, and 3 as object processors), and one GT-

SP processor. The characteristics of the GN&C processor system are shown in Figure 4.16. The GN&C

system occupies a space of l"xl"x7" with a power consumption of 91.92 Watts and weighs

approximately 2800 grams. The computing power of the GN&C is 76.4 MFLOPS for data and object

processing functions. A computing powcr of 9)73 NIPS is provided for signal processing. The system

I/O bandwidth is 3.S Gbps (giga bit.. por scondj 'or data/obJect proccssing and 2.6 Gbps for signal

I

50

With a progression to 0.5 micron CMOS technology, the Georgia Tech GN&C processor system

can be packaged in I" x 1" x 2". With a factor of 2 improvement in speed the GN&C processor would

then have a performance fo 152 MFLOPS for data/object processing and 1946 MOPS for signal

processing with an expected 1/0 bandwidth of 12.3 Gbps. The projected characteristics of the GN&C

processor with 0.5 micron technology are shown in Figure 4.17.

I

I 51
I 0

Yt

I ~o o~y
Ir

Cf)

..

................
CD C,

CD CD CZ rUm

C((9

ItIL
C/IO

IzI

52

C)

WEE& I
>~ ~ 1U<I

~I1 WilE

000

I F-

I U)

IO LLG

UCC
cf)

Ic
CDCIN

.0- '-\2

M co1 n(
LO)

bDD
> C.)

Il

w -

0) oil

co.

m LLI
0 o:OO C'2

00

N0c0 \ CO

CD C)OC\2 C) L-

x~ x- X -4L
Z F ..

(9 I
4 I ,~

- a- - -

15

z

Lo cc Ul

A ~Z1Ic
rnnnLZO

-~~F LO_____

0O M 0 c

cwd

WCD

CQ Q c CQF-- /* u
~o xx x X~ X

-X-; CQ--4

cz__t______

Z L E-E-E-- 0. cn

E- ~ ~ E- - -- I

LUi

56

5. SOFTWARE DEVELOPMENT

5.1. Objectives

The parallel hardware developed under the program will be virtually worthless without user

friendly software development tools. Software is needed to support the development of 6 DOF

simulations for KEW interceptors, flight software for the GN&C Processor and Seeker/Scene models for

the SSE. All of this software needs to be Ada compatible. Georgia Tech has initiated a software

development program that addresses this issue.

5.2. Capabilities

5.2.1. Overview of Software Architecture

Georgia Tech is devising an integrated parallel programming framework (IPPF) for the

development of software for the special purpose parallel processor architectures. The IPPF serves as an

entity for the integration of diverse hardware components and provides a consistent interface for effective

exploitation of hardware capabilities. The IPPF consists of four components: user interface, compilation

and execution, operating and monitoring system, and database and tool integration. The overall software

architecture of the IPPF is shown in Figure 5..

5.2.1.1. User Interface

The conventional programming method uses direct text editing of program source code. This

mode of programming is still supported in the IPPF environment. However, the primary method of

programming is through a block editor and block diagram editor. Using the block editor, the user creates

and defines basic functional programming blocks. Each functional block is represented by a graphical

block diagram. Data flowing into and out of the block are represented by input and output connection

ports. The behavior of the block is represented by a self-contained code segment with receive commands

for information flowing into the block and send commands for information flowing out of the block. The

block diagram editor allows a user to assemble predefined functional blocks and connect the blocks into a

higher level system of functional blocks. Using this method, a complex application program can be

graphically and hierarchically developed.

The configuration editor and monitoring specification allows a user to effectively control

hardware resources and specify specific monitoring information for an application run. The default

hardware configuration is automatically extracted from the application block diagram. Manual

configuration is only needed if optimization around a particular hardware configuration is desired. I

57

Z a,

QLV

0 L
0u D+ 'L,

0.. +L

0. z
* Q<

<F

U U U U

0

zz __

0 u

LU U U

w zL E-<-

0 0 0 L

oo
(< IL UIU L-" 0 041 1 L9

w uj- ct

58

I
The text editor, block editor, block diagram editor, configuration editor, and monitor

specification are incorporated into an integrated mouse-controlled, menu-driven, graphical environment.

5.2.1.2. Compilation and Execution 3
Regardless of the form of user interface, either through block diagram editing or direct program

editing, the eventual output from the user interface is program source code. The source code is directed

to an appropriate compiler to generate the target object code for execution. The programming languages

supported are Ada, Pascal, C, and FORTRAN. A crossbar compiler is used to compile the specification 3
of a communication configuration into interconnection patterns between processing elements. Each

processor type requires a separate compiler, linker, and loader. Processor specific low level utilities are

incorporated into the environment database.

5.2.1.3. Operating and Monitoring System 3
The operating system provides efficient run-time system constructs for effective utilization of the

underlying capability of hardware resources. It provides a concise interface between the various 3
programming languages (Ada, C, Assembly language, etch.) and the underlying architecture of each type

of processor element. It also provides a facility for exception handling and error recovery mechanisms.

The operating system gives each processor element the ability to execute multiple tasks. This is

especially important when the number of functional blocks exceeds the number of available processor

elements. The monitoring system provides a useful mechanism to obtain feedback from an application

run. It provides capability for a systematic display of application results and a structured facility for real-

time data collection. The monitoring system also serves as the interface for system debugging.

5.2.1.4. Database and Tool Integration

The software database provides a repository for the block diagrams, configuration information,

monitoring specification, language-specific package library, target-machine specific utilities, operating

system constructs, and monitoring systems. The database serves as an integration tool for the other three

components of the IPPF. A database interface provides constructs to create, access, update, and display

the information in the database.

5.2.2. Characteristics of Parallel Programming Environments

Highly parallel architectures offer opportunities for significant improvements in program

execution speed and reliability. However, thesc opportunities cannot be realized unless effective program

development tools are available. A parallel programming environment (PPE) differs from conventional

program development systems in several ways.

59

5.2.2.1. Explicit and Implicit Parallelism

A program's parallelism must be expressed (1) explicitly by the programmer and/or (2) implicitly

as part of a PPFs "compilation" of program source. Typically, larger to medium grain parallelism may

be expressed explicitly. The effectiveness of implicit parallelism has been demonstrated for smaller grain
parallelism and for specific application domains (e.g., for functional descriptions of real-time

simulations).

For a PP, (1) and (2) imply that explicitly expressed parallelism should be visible and easily

modifiable by applications programmers, whereas implicit parallelism may be visible but need not be

directly modifiable. For the real-time simulations addressed by the PFP project, we will use domain-

specific representations of parallelism, in the form of graphical descriptions of functional

decompositions.

5.2.2.2. Parallelism and Target Parallel Machines

Typically, programming models have to be specialized for specific target parallel machines and

operating systems. For example, for many hypercube applications, synchronous styles of programming
have been shown effective, whereas asynchronous (or chaotic) algorithms have been highly successful on

non-uniform memory multiprocessors. Therefore, any PP that attempts to provide support for parallel
programming needs to be able to support multiple backend parallel machines and it must also support the

use of multiple programming models. For the PFP multicomputer, a synchronous style of programming

appears appropriate. In addition, a PP must be able to use standard programming languages, such as Ada

and C.

5.2.2.3. Parallelism and Application Domains

For the explicit expression of parallelism, the programming model presented to the programmer

should address the specific properties of the programmer's application domain. For example, in real-time

simulations, low-level control functions are easily described as statically decomposed collections of

communicating functional blocks. This suggests that a useful programming model is one that presents
the functional (possibly replicated) building blocks in the application using graphical descriptions. This

is the approach we will pursue for the PP being constructed for the PFP, in conjunction with visual

illustrations of the performance effects of such decompositions.

More importantly, one of the environment's attributes will be its ability to exploit application
domain-specific knowledge for assistance in parallel programming. For example, when performing
resource allocation for PFP's real-time simulations (e.g., mapping functional blocks to processors), the
system will use built-in mapping functions, thereby removing from programmers the responsibility of

computing and enforcing such mappings.

60

5.2.2.4. Performance Evaluation and Improvement

Since the primary objective of parallel computing is performance improvement, a PP must assist

the programmer in gaining understanding of program performance on the target parallel machine. This

implies (1) that tools for program monitoring, performance evaluation or prediction and for the

visualization of performance information should be integral parts of the programming system and (2) that

programmers should be assisted in making changes to their parallel applications in response to such

evaluations or predictions - termed program tuning. We will address this issue in the context of the 3
abstract information representation described next. Specifically, we will assume that the PP, should

provide a general framework that makes effective use of a wide variety of performance display, 3
evaluation, and visualization tools.

5.2.2.5. Abstract Information Representation 3
Whether programs are evaluated and tuned by inspection and alteration of their parallel structure,

of resource allocation decisions, or of specific program components, the representation and manipulation

of the program required for making such changes should be straightforward. This requires that a PP

maintain abstract representations of the executable version of the parallel program and of its execution

environment that are easily inspected and manipulated and contain sufficient information for program

generation and alteration, as well as for the visualization and evaluation of its performance. This abstract

representation must describe parallelism in a fashion that is "neutral" with respect to the program I
representation at routine and the program description at compile-time. The representation developed as

part of this research is termed program views. It describes a parallel program at two levels: (I) at the 3
high level as a set of interacting and related entities with certain attributes using a data model similar to

the entity-relationship database model and (2) at a lower level as a set of interacting processes, where

process interactions are described as messages sent and received on abstract communication channels. In

addition, since multiple components of tools in a PP must jointly access or manipulate the information

repository(ies) associated with the information model, the model is defined such that the repository(ies)

offers the following functionality: (1) facilities for sharing information between cooperating tools, (2)

facilities for tool control via the shared repository, and (3) facilities for tool observation. Topics (1)-(3)

are discussed below.

5.2.2.6 Operating Software and Parallel Machines 3
Since higher performance parallel applications must make efficient use of the target system's

hardware, routine software actually consists of both application code and operating system code, and

program tuning also concerns the performance of the operating system components used by the

application. Specifically, tuning may concern operating system configurations, such as the selection 3
among alternative operating system components, the determination of relevant OS parameters (e.g.,

setting buffer six for message communication), or even the synthesis or construction of appropriate OS

I

61

components in conjunction with the generation of executable program code. This implies that the

proposed PP cannot be constructed with the assumption that all parallelism is mapped to a single set of

routine constructs. Instead, the "operating system" actually consists of a variety of routine primitives

configurable by the application programmer.

5.2.3 Technologies for Parallel Programming Environments

The successful development of a PP requires the following technologies:

Language and compiler technology for the support of multiple models of parallel programming
(when explicitly describing parallelism) and for the automatic or semi-automatic parallelization of

programs. Here, we are using ;"d developing Ada and C compilers, linkers, and loaders, enhanced with

libraries and special-purpose packages for inter-processor communication and coordination on the target

parallel machine.

For program generation, analysis, and improvement: programming environment, database, and

visualization technology for the representation, sharing, and display of information about the parallel

program, its execution environment, and its rn-time performance. This is the PP being developed in this

research.

Performance analysis, program specification techniques, and, perhaps, Artificial Intelligence

technology (1) for performance modeling of the parallel program, (2) for expression of relevant

performance attributes of parallel programs or of program invariants not to be changed during

performance tuning, and (3) for relating models and measurements to actual program code as well as for

suggesting and making changes to such code. Here, we will offer simple means of performance

evaluation and program visualization, coupled to a graphical interface used for program development.

Operating system technology for efficient performance monitoring and for the efficient execution

of parallel programs on different target parallel machines. Here, we have developed a configurable and

portable operating system kernel presenting a "library" of primitives used by the programmer. Portability

is essential in light of the multi-CPU nature of any PFP, machine, which may contain both special

purpose processors (such as the FPP) and general-purpose processors like the Intel 386 or 860 boards.

It is beyond the scope of a single research effort to develop novel technologies in all of the areas

listed above. Therefore, for purposes of this work, we are focusing on operating systems and

programming environment technology:

Compiler technology and environment tools. Due to the special-purpose nature of the target

hardware, we have been designing and implementing a vanety of tools for hardware use, including Iow-

levcl device drivers, systern monitoring and confiz_,uratien software, comoilers and issernb!ers fOr the

62 m

target parallel machine, loaders, linkers, etch, In addition, significant efforts have been expended on 3
facilitating system installation, by use of Unix Makefiles. The environment is structured as a collection of

tools sharing a common information store, called the abstract information representation. j
Abstract information representation and tool integration. As a prerequisite for the support of

multiple models of parallel programs, we have designed and implemented a high level information model

and associated information repository that can be used to represent relevant program information

(compile-time and routine information, information about the program and its execution environment). m

In addition, we have designed the model so that it and the repository may be used with multiple tools for

information sharing, mutual observation, and mutual control.

Performance evaluation, improvement (tuning), and visualization. We have prototyped a

graphical user interface to the system and are now using our experiences with this prototype to

implement a framework for the graphical construction of parallel programs and for the visualization of

their performance. I
Operating system technology. We have developed a configurable kernel that has been ported to

both the special-purpose processors (FPP) on the PFP, as well as the general-purpose CPU's (currently,

the Intel 386). Kernel communication primitives offer substantially increased functionality compared to I
that offered by the basic hardware, yet are quite competitive in performance.

Future work may concern the use of graphical techniques for program tuning and an investigation

of the role of precise specification of program functionality or performance (e.g., performance models) in

the tuning of program performance.

5.3 Current Status of the Software Development 3
The current implementation of the Integrated Parallel Programming Framework (1PPF) consists

of four primary tool sets: Parallel Program Construction System (PPCS), Parallel Program Monitoring I
System (PPMS), Parallel Program Tuning System (PPTS), and Tool Integration System (TIS).

A programmer uses the PPCS for the initial development of a parallel application. When the i
program is sufficiently complete, the programmer runs it and gathers performance data with the PPMS.

Based on the performance measurements, more development with the PPCS might be necessary or the I
PPTS can be used to tune the completed application for the target execution environment. These three

tool sets are supported by and coordinated b,, the TIS. 3
The PPCS encompas.scs all tools used dunn program development: a :raphical u:-cr iuer'ce.

recompilaton drivers, c)mp,,,rs, asemblers, proeram libraries, linkers, loaders. Currently ,, PI-P

fPCS has a protorvpc erchical user -orfac, cal!'J "dc" or "Block Diar:cm EUr' i-ch rons ' e

I

3 63

I the X windows system, a sophisticated system of Makefiles and shell scripts which drive the

recompilation process, The Makefiles and scripts not only drive the recompilation of application

I programs but also the recompilation and installation of the PFP environment itself. A compiler which

translates a subset of Ada to C, a C compiler for the FPP, assemblers for both the FPP and FPX, a linker3 for the FPP, and loaders for the FPP, FPX and Intel 386 processors. These tools were all designed and

implemented in-house. Additionally, there are vendor-supplied compilers, assemblers, and linkers for the

Intel 386 processor and vendor-supplied and publicly available compiler tools and text editors for the Sun

host environment. Much work has been done in supporting the FPP: the C compiler, under development

for over a year and a half, has been subjected to a C test suite (the so-called "C Torture Test") and

Sappears to be stable. The compiler is currently being targeted to the FPX processor. We have purchased

a commercial Ada to C translator to replace our Ada-subset compiler and we are beginning to integrate it3 with the rest of the IPPF. This is part of a validated Ada compiler from Irvine Compiler Corporation.

The PPMS design is very new. Other than this design work, a rudimentary implementation3 exists for verifying timing characteristics of real-time simulations, but it does not yet provide any hints

on where performance problems exist within an application or how ;t might be modified to increase its

performance. A less rudimentary implementation which indicates communication bottlenecks is

underway.

The PPTS currently consists primarily of a compiler which produces process-to-processor

mappings and interprocessor communication patterns. The language for this compiler and the compiler

itself are currently being redesigned. The PPTS will ultimately include a graphical user interface where a

programmer can easily reconfigure and tune his parallel program for its target execution environment.

The TIS provides the basis for the PPCS, the PPMS, and the PPTS to work together effectively

and efficiently. It consists of several tools: a number of device drivers to control the PFP hardware, a

library supporting host program interaction with the hardware and the parallel programs it is executing,

and an automatic hardware configuration tool. The configuration tool also serves as an effective

hardware testing and diagnostic device, and a newly-completed entity-relationship-set database system

which implements the abstract information representation described above. Currently, each of these tools

is implemented. We are in the process of refitting some of the pieces of the PPCS, PPMS,and PPTS to

use the database system.

The current PFP environment and the associated PFP configurable kernel has supported the

development of the following applications: Satellite Attitude Control Simulation, 3-DOF Missile

Simulation (Terminal Phase). Multiple Thrcat/KEW Interceptor Simulation.

3 The implementation of the operating kernel is detailed in the PFP Kernel Design Document

wAhich is submitted under a separate technical report. The structure of the environment databae is

I

64 1

described in the Shared Persistent Data Structures design document which is also submitted under a i
separate technical report.

I
5.4 EXOSIM

5.4.1 Overview I

During the contract period, BDM Corporation was used as a subcontractor to develop a 6-DOF

simulation of an Advanced Exoatmospheric Interceptor. Their initial Simulation was KWEST. This

work was turned over to Coleman Research Corporation as a continuing effort. Coleman was funded

under a separate contract to complete the simulation with the objective of a parallel real-time U
implementation on the Georgia Tech PFP.

The following paragraphs are taken (with modification) from the Coleman documents delivered m

to USASDC [40 - 431. 1
The development of EXOSIM was initiated in October, 1988, using ERIS Baseline models and

subroutines. The BOOST-phase simulation, denoted KEERIS Version 1.0 and written in

ACSL/FORTRAN, was delivered to KEW on February 1, 1989 and verified against results of an

equivalent LMSC simulation.

A conversion of the simulation to all-FORTRAN was completed in mid-May. Extensive

enhancements of the KV-phase models, including autopilot, Kalman filter, and the ACS/VCS logic were

incorporated as well as integration of a staring Focal Plane Array (FPA) seeker noise model form the l
BDM Corporation. In addition, in order to achieve a true end-to-end simulation, POST-BOOST and

MID-COURSE flight modes were simulated at a low level of fidelity. These improvements resulted in

EXOSIM Version 1.0, delivered to KW on 30 June 1989.

The development of several additional enhancements was initiated in July, 1989, and completed

for EXOSIM Version 2.0. The primary upgrades were : incorporation of an IMU dynamic response

model, a high-fidelity seeker model, signal/object processing algorithms, and a detailed midcourse i

autopilot model. In addition, several changes were incorporated into the simulation structure to enhance

partitioning onto the PFP. m

5.4.2 Simulation Capabilities

5.4.2.1 Inertial Measurement Unit (IMU) i

The IMU model in EXOSIM Version 1.0 was a conventional strapdown unit run with truth states

and instantaneous (ideal) time response. For EXOSIM Version 2.0, second-order response charac:eristics

were incorporated. Error models for non-orthogonaiitv. misalignmc.nt. scale facter, bias, axd drit terms

I

65

were not explicitly defined in software for the Resonant Fiber Optic Gyro (RFOG) and Quartz Resonant

Accelerometer (QRA) components of the SSIMU. The approach taken by CRC was to retain the

flexibility available in the generic IMU model, currently resident in EXOSIM, and adapt this model

through data input and subsidiary code to create a SSIMU-specific simulation in future upgrades.

5.4.2.2 Midcourse Guidance and Attitude Control

The midcourse guidance in EXOSIM version 1.0 used a separate subroutine to control KV

pitchover, and midcourse event sequencing, including divert bum scheduling. For EXOSIM Version 2.0,

a midcourse guidance routine and a midcourse autopilot were incorporated to control midcourse

sequencing and KV orientation. Immediately following boost, the roll rate is driven to zero and the KV

is pitched over. When the estimated attitude errors and body rates are below the midcourse autopilot

thresholds, the seeker shroud, nose fairing, and booster adaptor are dropped and four VCS disturbance

bums are sequenced. The angular acceleration induced by thruster misalignments is recorded, and used

by the KV autopilot for disturbance compensation. The KV is then rolled to align the nearest VCS

thruster with the perpendicular component of the velocity to be gained vector, VG, and the first

midcourse divert occurs. A second divert occurs approximately half-way between the first divert and the

range at which seeker acquisition is anticipated. The final divert occurs just prior to anticipated

acquisition.

5.4.2.3 High Fidelity Staring FPA Seeker Model

EXOSIM Version 1.0 employed a simple, single target angle noise model provided by the BDM
Corporation. For EXOSIM Version 2.0, a CRC-developed detailed (pixel-level) 128 x 128 array model

(CRC Seeker Model) was added in order to implement elementary, multiple object discrimination and

single target tracking and guidance algorithms for assessment of Kalman filter performance. The model

uses the LATS optical telescope design and focal plane size parameters but is specific to a 8-14 micron

MCT array with MIS architecture and CID parallel readout via shift register clocked charge

preamplifiers. Although the preamp frequency shaping networks are designed for a maximum frame rate

of 128 per second, the model is currently running at 100 per second to be compatible with the GIT PFP

and seeker emulator interface.

Noise sources modeled include: (a) optical (background or "Photon" noise), (b) preamplifer,

consisting of JFET preamplifier white and 1/f current and voltage noises, Johnson noise in the input and
feedback resistors, and shot noise due to leakag(e/dark current, (c) KTC (reset) noise, (d) Fixed pattern

noise due to parasitic capacitances and (e) non-uniformity effects in both the detectors and preamplifiers.

The l/f noise in the detczters. a phenomena which is not well understood, and sampling (aliasing) noise,3 are not modeled at present.

I

66

The model can simulate up to ten point targets of varying radiant intensities and a fifty-point N
resolved target for terminal phase imaging and aimpoint selection. In the model used for EXOSIM
Version 2.0, a benign complex of five objects with arbitrary signatures is assumed to allow cursory I
simulation of signal and object processing algorithms, which are briefly described in Sections 5.4.2.4 and
5.4.2.5. The characteristics and types of objects selected, while representative, bear no relation to tactical 3
requirements. The threat composition, shown in Table 5.1, has been selected to insure discrimination and
target designation effectiveness.

I
I
I
I
I

I
I
I
I
I
U
I

! ! I

I
67

Table 5.1 Objects Contained in Seeker FOV at Acquisition

OBJECT NTYPE RADIANT INTENSITY (W/sTER)

TARGET 5.4.2.3.18.CSO (UNRESOLVED@ Racquition)

ETA-BALLOON 5.4.2.3.19.CSO (UNRESOLVED @ Racquition)

TANK BODY

RHO - BALLOON

DEPLOYMENT

DEBRIS/FRAGMENT

The on-focal-plane (analog) processing for the LATS seeker is still under study by LMSC and its

subcontractors. For EXOSIM Version 2.0, several analog processing functions have been assumed.

These include: background substration and pedestal clamping, signal limiting, and AGC (frame rate

select). The method of nonuniformity compensation is not defined: a residual (uncompensated) value of

.05 percent is assumed for both detectors and preamps,

5.4.2.4 Signal Processing

Simplified signal processing algorithms were developed by CRC for the acquisition (signal to

noise ratio, thresholding and pixel false alarm reduction, function. In order to reduce computer run time,

full-field signal processing is performed on the first frame only, which is the only one in which all of the

128 x 128 pixels are sampled. This technique allows selection of only one object or cluster for

subsequ" t tracking and object processing, and the only pixels sampled subsequent to target selection are

those in the immediate vicinity of the tracked object. All other pixels are gated out, which reduces the

simulation time on a VAX 11/750 from approximately five minutes per frame to less than three seconds

per frame, allowing the KV phase guidance simulation to be run on a frame-by-frame basis all the way

form designation to impact or guidance termination.

5.4.2.5 Object Processing

Like the Signal Processing algorithms, the Object Processing functions employed in EXOSIM

Version 2.0 were developed for economy of run time and are confined to a single object or cluster. The

algorithms used are: track gating, clustering, arealintensity ccntroiding, CSO resolve, frame rate select.

target designation, imaged (resolved) target logic, and finally, the terminate guidance logic as ihe target

ills the FOV just before impact. Since only one a hce: is being trackcd, (within the eatd FOV . a

68

frame-to-frame correlation algorithm is unnecessary. Aimpoint select and edge track algorithms were not I
developed for this version of EXOSIM, but could be easily included for future enhancements.

5.4.2.6 Simulation Structure

Several changes were made in the simulation structure to allow mapping onto the GIT PFP. U
These includes:

no constants are passed in argument lists I
initialize subroutine on each individual module

option flag to event or time drive seeker initiation N
frame rate reciprocal made equal to integral of integration time

5.4.3 Parallel EXOSIM

The simulation described in section 5.4.2 was sent to Dynetics Inc. for conversion to a parallel i
format. Dynetics completed an analysis of the Boost phase, stages 1 and 2, and sent a five processor

version of the code to Georgia Tech. This code became the baseline for all work in developing a parallel 3
implementation of EXOSIM.

Georgia Tech examined all the Dynetics code and partitioned this five processor version into a 27 3
processor version. This was run on iSBC 286/12 and iSBC 386/12 processors. On the iSBC 386/12 the

run time was 3.9:1, which is four times real-time. Efforts were then initiated to convert the code to the

GT-FPP/3. This is now underway. All 27 code sections have been converted to C and tested for

accuracy. The C code is now being compiled and testing will begin shortly.

Conversion of EXOSIM V2.0 will begin as soon as the work on VI.0 proves all the Software

tools are reliable. This version, exploded into all its subroutines, is shown in Figure 5.2. Georgia Tech

has separated the subroutines into two flight phases. Figure 5.3 shows the block diagram for the boost

phase. This code will follow the version 1.0 code very closely. Modifications should be minimal,
resulting in a fast conversion process. The midcourse/terminal phase shown in Figure 5.4 will be an all i
new effort. Most of this code is quite different from the boost phase and will require a significant effort

to convert from serial to parallel form. 3
5.4.4 Parallel Ada EXOSIM

After a version is running in C on the PFP, it can be rewritten in Ada, translated from Ada to C, I
compiled and executed. These steps have been done for some small code sections. but not for any large

simulation. This work is continuingz under USASDC Contract No. DASG60-89-C-0142.

I

01C 69
* 02

0z

z
wI 0

IA

Z 0 c 0 0

UJ) C00 0 c c*g 0-:Ii C.
LU~ w 2

IU (A 0 0 0

w tw

ww
~cncc

IOu u
U 5

I5 LiII
Il i- c9I-F-T 7

C)
U)0

_ D
I- 0< z- -j

C/~ L ___ - __

70

0 LL0

z 0

0 0--

0 <

-J 0

ml
w

cc: <U

Ul)

c-I-- C/!)0
0 U) 010

CC:c

w

U, (D

rLLI 0
CIO

71

0
u

0>
a:r

0
I:
CL,

(D9

< a-- >0

uin

0 __
CO,

aa:

a: I

-

coi

4 0
CC C)

I _L

IrL

00

0 II Lii

72 !

6.0 TECHNOLOGY REFERENCES 3
Technology references are listed in Section 7. This section coordinates the references to a particular
technology. 3

6.1. SEEKER/SCENE EMULATOR TECHNOLOGY

6.1.1. Overview U
[16] 9, 44, 49 - 50

6.1.2. Hardware U
[16] 45 - 46

6.1.2.1. GT - XIT/I: Crossbar Interface Module Version I 3
[10] 30

6.1.2.2. GT - XIT/2: Crossbar Interface Module Version 2 U
[16] 45, [18] App A

6.1.2.3. GT - SEI/2: Seeker Emulator Interconnect Board 3
[16] 45, [18] App B

6.1.2.4. Backplane 3
[161 45, [18] App C

6.1.3. Software 3
6.1.3.1. Data Pre-processing

[16] 46, [18] App D I
6.1.3.2. SSE Operation

[16] 46, [18] App E,F 3
6.1.3.3. Data Generation

[18] AppG

6.1.3.4. Signal Processing Algorithms
[16] 47 - 49, [18] App H, I, J, K, L, M

6.2. PARALLEL FUNCTION PROCESSOR TECHNOLOGY 3
6.2.1. Spock

[1] 1.1, 1.5 1
6.2.1.1. Spock Array

[41 3.1 - 3.3 3
6.2.2. Architecture

[9] 29, [!6] 11 - 13. 451 3
I

73

6.2.3. Hardware

6.2.3.1. GT - ADDA/2: Analog Input/Output Module
[9] 30, [16] 16 - 22, [17] App B, [44], [46]

6.2.3.2. GT - ARI/I: Array Interconnect Module
[9] 30, [16] 23 - 25, [17] App C, F, [44], [46]

6.2.3.3. GT - DPX/1: Double Precision Extension for GT-FPP
[201 80

6.2.3.4. GT-FFS/1: Multi-Function Board for GT-FPP
[20] 80, [26], [44], [46]

6.2.3.5. GT-FPP/I: Floating Point Processor Version 1
[4] 1.1 - 1.11

6.2.3.6. GT-FPPi2: Floating Point Processor Version 2
[91 31, [20] 79, [341

6.2.3.7. GT-FPP/3: Floating Point Processor Version 3
[44], [46]

6.2.3.8. GT-FXM/1: Multi Variable Function Processor
[9148 - 53, [11] App A,B

6.2.3.9. GT-FXS/I: Single Variable Function Processor
[1]2.1 - 2.21,[9131 - 41

6.2.3.10. GT-SEQ/2: Sequencer Module
[91 42 - 48, [11] App N, [16] 29 - 37, [44], [46]

6.2.3.11. GT-SPT/1: Sequencer/Processor Transition Board Version 1
[44], [461

6.2.3.12. GT-SPT/2: Sequencer/Processor Transition Board Version 2
[91 48

6.2.3.13. SUN Host
[16] 43

6.2.3.14. GT - SSD/I:
[9] 48

6.2.3.15. GT-SXI/2: Sequencer/Crossbar Interface Version 2
[9] 48, [44], [46]

6.2.3.16. GT-SXI/3: Sequencer/Crossbar Interface Version 3
[16]25 - 26, [17] App D

6.2.3.17. GT-XB2/1: Crossbar Baord
[161 13 - 15, [171 App A, [441, [461

6.2.3.18. GT-DXB/2: Crossbar Piggyback Board
[441, [461

74 I
6.2.3.19. GT-XI 86/2: 1

[91 30

6.2.3.20. GT-XI 286/1: Crossbar Interface/iSBC 286/Version 1
1441, [46]

6.2.3.21. GT-XI 286/2: Crossbar InterfaceiSBC 286/Version 2
[16] 26 - 28, [17] App E,F U

6.2.3.22. GT-XIT/I:
[91 31, [10130 3

6.2.3.23. GT-XSD/2: Crossbar Status Display Board
[44], [46]

6.2.3.24. GT-MRH/1: Multibus Repeater Host
[44], [46] U

6.2.3.25. GT-MRS/1: Multibus Repeater Slave
[441, [461 1

6.2.3.26. GT-DT2/1: Data Memory Board/GT-FPP
[44], [46]

6.2.4. Software I
6.2.4.1. Test Routines

[1] 1.1 - 1.4, [16] 51 - 53, [19] App B, [47]

6.2.4.2. Chromatics Display
[1] 1.5

6.2.4.3. Host Utilities
[1] A.1 - A.48

6.2.4.4. Crossbar Interface Utilities for iSBC 286/12
[9] 55, [11] App H

6.2.4.5. Ada Utility Routine
[20] App A

6.2.4.6. System Software
[161 54, [191 App C 3

6.2.4.7. Pascal Compiler for GT - FPP
[9] 54, [351 3

6.2.4.8. Crossbar Compiler
[91 55, [11] AppG

6.2.4.9. Simulator for GT-FPP
[I'l App B

6.1.... Micreasscmhlcr for GT-FPP

I

75

[4] App A

6.2.4.11. Support Utilities for GT-FXS/I
[9] 54, [11] AppF

6.2.4.12. PFP Simulation Support
[91 54

6.2.4.13. PFP Programming Environment
[311

6.2.4.14. PFP Run Time Kernel
[251

6.2.4.15. iSBC 286/12 Monitor

[16151, [19] App A, [441

6.2.5. Automated Input

6.2.5.1. P-CAD
[1) 1.7 - 1.10

6.2.5.2. Block Diagram Input
[9] 59 - 76, [11] AppC, D

6.3. DIGITAL EIMULATION TECHNOLOGY LABORATORY

6.3.1. Overview
[16] 1-7,9

6.3.2. Simulation

6.3.2.1. DOF Linear EXO Interceptor model (Dynetics)
[2] 4.10 -4.36, [9] 56, [11] App. I

6.3.2.2. DOF Linear ENDO Interceptor Model (Dynetics)
[21 4.36 - 4.42, [4] 3.4 - 3.33

6.3.2.3. DOF Nonlinear ENDO Interceptor Mooel (Dyneics)
[2] 4.42 - 4.71, [4] 3.34 - 3.10

6.3.2.4. Satellite Attitude Control System
[9156, [111 App J

6.3.2.5. Target Initialization
[161 56, [191 App D

6.3.2.6. Spinning Missile
[16156, [19] App E

6.3.2.7. EXOSIM
[16] 15, [40], [F], 142], ,43]

6.3.3. Benchmarks

76 I
6.3.3.1. Fast Fourier Transform

[9] 56 - 57, [11] App J

6.3.3.2. Matrix Muliplication
[9]67 - 58, [11] AppL

6.3.3.3. Partial Differential Equations
[9] 58, [11] AppO

6.4. GUIDANCE, NAVIGATION AND CONTROL PROCESSOR TECHNOLOGY

6.4.1. Overview
[201 1, [38 1 - 2, [15] 1- 2

6.4.2. GT-DP/1: Data Processor
[5] 3- 4,[12] 6- 7,[1315- 6,[151 - 2 I

6.4.2.1. Architecture
[10131 - 33, 35 - 36, [20] 2

6.4.2.2. Gr-VDR/1: DataramI
[4] 2.13 - 2.15, [10] 42 - 46, [20] 4, [27], [28], [5] 35 - 48, [13] 10 - 13

6.4.2.3. GT-VFPU/I: Floating Poing Unit Version 1 I
[4] 2.13, [10147 - 48

6.4.2.4. GT-VFPU/2: Floating Point Unit Version 2
[20] 4, [29], [30], [13] 14 - 18

6.4.2.5. GTVHI/1: Host Interface
[4] 2.3, [9] 93 - 94 I

6.4.2.6. GT-VSEQ/I: Sequencer
[4] 2.3- 2.7 [10] 41 - 43, [20] 2, [23], [24], [5] 6- 34, [13] 7 -9

6.4.2.7. GT-VSM8/l: Serial Network Interface
[9] 90- 92, [10] 49- 52, [20] 4, [32], [331, [15] 9, [13]24- 28, [5]61, [12122- 26, [13] 19- 23 I

6.4.2.8. GT-VSNI/1: Serial Switch Matrix
[10] 37- 40, [201 4, [21], [22], [5] 49 - 62, [121 27 - 28 I

6.4.2.9. Multichip Simulation
[13] 29- 30 3

6.4.3. GT-SP: Signal Processor

6.4.3.1. GT-VCLS/I: Clustering -
[20167- 70 [115] 5- 6

6.4.3.2. GT-VCTP,/1: CcnlroidingI
[201 71 - 70, [151 6-,

6.4.3.3. (IT-VFPI/ 1: FP.:\ !nP*r:'.r i

I

I77
[20] 5 - 6

6.4.3.4. 6.4.3.4.GT - VGS/1: Gamma Supperssion
[201 5

I 6.4.3 5. GT-VNUC/I: Non-uniformity Correction
[20]8 -21, [1512 -3

6.4.3.6. GT-VTF/1: Temporal Filtering
[20] 22 - 45, [15] 3

6.4.3.7. GT-VSF/l: Spatial Filter
[20] 46 - 52, [15) 4

6.4.3.8. GT-VTHR/l: Thresholding
[20153 -66, [15]4 -5

6.4.4. GT-EP: Executive Processor
[15] 7 - 8

6.4.4.1. GT-VDAG/l: Data Address Generator
[20] 78, [37], [15] 8 - 9

6.4.4.2. GT-VIAG/l: Instruction Address Generator
[20] 77, [36], [15]18

6.4.5. VLSI Design Testing

[10153 -54,[12] 1 -4

6.4.6. Transputer GN&C Processor

1 6.4.6.1. GT-TP8/1: Transputer Prototype Version 1
[1] 2.28 - 2.36, App B, [9] 48, [101 26 - 27

3 6.4.6.2. GT-TP8/2: Transputer Prototype Version 2
[19] 27 - 30

6.4.6.3. Transputer Interconnect Chip
[516- 10

* 6.5. VLSI PARALLEL FUNCTION PROCESSOR TECHNOLOGY
[51 1 - 2, [121 6- 7

6.5.1. Architecture
[9] 78 - 79

6.5.2. VLSI Design

6.5.2.1. GT-VHC/1: Crossbar Handshake Controller
[41 2.16 -2.20, [9164 -86, [5120-49, [121 13- 16

6.5.2.2. GT-VSM32/1: Switch Matrix
[41 2.20- 2.26, [9] 80- 83, [5] 11 -19. [12] 17 -21

U

78

6.5.2.3. GT-VPNI/1: Parallel Network Interface
[4] 2.7 - 2.13, [9] 87 - 89, [5] 50 - 60, [121 8 - 12 3

6.5.2.4. GT-FCS/I: Fully Connected Switch
[15] 10 3

6.5.2.5. GT-NTC/I: Network Traffic Controller
[15] 10-

6.6. MISCELLANEOUS

6.6.1. Specifications I
6.6.1 1. Crossbar Intetiace Standard

[11 App E I
6.6.2. FPA Technology

6.6.2.1. IR Seeker Characteristics U
[217.24 - 7.52

6.6.2.2. Seeker Design I
[2] 7.53 - 7.69

6.6.3. Component Technology I
[2] 7.94 - 7.101

6.6.4. Guidance 3
[2] 7.2 - 7.23

6.6.5. Trajectory Modeling and Simulation 3
[21 4.73 - 4.120, [2] 7.70 - 7.93

6.6.6. Materials Management 3
[16] 37 - 42

I
I
I
I
I
U
I

*79

U 7.0 REFERENCES

- [I] Afford, C.O. and J.O. Hamblen, "Macrostructure Logic Arrays," Volume 1, Final
*Technical Report, U.S. Army Strategic Defense Command, Contract No.

DASG60-85-C-0041, Georgia Tech, CERL, June 20, 1986.

[21 Alford, C.O. and J.0. Ha,,blen, "Macrostructure Logic Arrays," Volume 2, Final
Technical Report, U.S. Army Strategic Defense Command, Contract No.3 DASG60-85-C-0041, Georgia Tech, CERL, June 20, 1986.

[3] Alford, C.O. and J.O. Hamblen, "Macrostructure Logic Arrays," Volume 3, Final
Technical Report, U.S. Army Strategic Defense Command, Contract No.
DASG60-85-C-0041, Georgia Tech, CERL, June 20, 1986.

[4] Alford, C.O. and J.O. Hamblen, "Macrostructure Logic Arrays," Volume 4, Final
Technical Report, U.S. Army Strategic Defense Command, Contract No.
DASG60-85-C-0041, Georgia Tech, CERL, June 20, 1986.

[5] Alford, C.O. and J.O. Hamblen, "VLSI Development Plan," Volume 1, Interim
Technical Report, U.S. Army Strategic Defense Command, Contract No.
DASG60-85-C-0041, Georgia Tech, CERL, July 15, 1986.

[6] Alford, C.O. and J.O. Hamblen, "VLSI Development Plan," Volume 2, Interim
Technical Report, U.S. Army Strategic Defense Command, Contract No.
DASG60-85-C-0041, Georgia Tech, CERL, July 15, 1986.

[71 Alford, C.O. and J.O. Hamblen, "Program Plan," Volume 1, Interim Technical Report,
U.S. Army Strategic Defense Command, Contract No. DASG60-85-C-0041,
Georgia Tech, CERL, July 15, 1986.

[8] Alford, C.O. and J.O. Hamblen, "Program Plan," Volume 2, Interim Technical Report,
U.S. Army Strategic Defense Command, Contract No. Dasg60-85-C-0041,
Georgia Tech, CERL, July 15, 1986.

U [9] Alford, C.O., "Macrostructure Logic Arrays," Volume 1, Final Technical Report, U.S.
Army Strategic Defense Command, Contract No. DASG60-85-C-0041, Georgia3 Tech, CERL, November 10, 1987.

[10] Alford, C.O., "Macrostructure Logic Arrays," Volume 2, Final Technical Report, U.S.
Army Strategic Defense Command, Contract No. DASG60-85-C-0041, Georgia
Tech, CERL, November 10, 1987.

[11] Alford, C.O., "Macrostructure Logic Arrays," Volume 3, Final Technical Report, U.S.
Army Strategic Defense Command, Contract No. DASG60-85-C-0041, Georgia
Tech, CERL, November 10, 1987.

3 [121 Alford, C.O., "VLSI Development Plan," Volume 1, Interim Technical Report, U.S.
Army Strategic Defense Command, Contract No. DASG60-85-C-0041, Gcorgia
Tech, CERL, November 25, 1987.

80 U
I

[13] Afford, C.O., "VLSI Development Plan," Volume 2, Interim Technical Report, U.S.
Army Strategic Defense Command, Contract No. DASG60-85-C-0041, Georgia
Tech, CERL, November 25, 1987. i

[14] Alford, C.O., "Program Plan - CLIN 0005," Interim Technical Report, U.S. Army
Strategic Defense Command, Contract No. DASG60-85-C-0041, Georgia Tech, I
CERL, July 1, 1989.

[15] Alford, C.O., "VLSI Development Plan - CLIN 0005," Interim Technical Report, U.S.
Army Strategic Defense Command, Contract No. DASG60-85-C-0041, Georgia
Tech, CERL, June 9, 1989.

[16] Collins, T.R., et. at., "Macrostructure Logic Arrays," Volume 1, Final Technical Report,
U.S. Army Strategic Defense Command, Contract No. DASG60-85-C-0041,
Georgia Tech, CERL, July 20, 1989.

[17] Collins, T.R., et. al., "KEW Digital Emulation Laboratory," Volume 2, Final Technical
Report, U.S. Army Strategic Defense Command, Contract No. DASG60-85-C-
0041, Georgia Tech, CERL, July 20, 1989.

[18] Collins, T.R., et. al., "KEW Digital Emulation Laboratory," Volume 3, Final Technical
Report, U.S. Strategic Defense Command, Contract No. DASG60-85-C-0041,
Georgia Tech, CERL, July 20, 1989.

[19] Collins, T.R., et. al., "KEW Digital Emulation Laboratory," Volume 4, Final Technical i
Report, U.S. Strategic Defense Command, Contract No. DASG60-85-C-0041,
Georgia Tech, CERL, July 20, 1989.

[20] Collins, T.R., et. al., "GN&C Processor Development," Volume 5, Final Technical
Report, U.S. Strategic Defense Command, Contract No. DASG60-85-C-0041,
Georgia Tech, CERL, July 20, 1989.

[21] Ghori, A., "Eight Point Crossbar Switch Chip GT-VSM8/1:VLSI Design Document,"
CERL Technical Report, CERL008-0020.1, Georgia Tech, CERL, May 26,
1988.

[22] Ghori, A., "Eight Point Crossbar Switch Chip Gt-VSM8/l.Design Verification
Document," Special Technical Report CERL008-0021.1, U.S. Army Strategic
Defense Command, Contract No. DASG60-845-C-0041, Georgia Tech, CERL,
May 26, 1988.

[23] Ghori, A., "Sequencer GT-VSEQ/I: VLSI Design Document," CERL Technical Report,
CERL008-0040. 1, Georgia Tech, CERL, March 26, 1989.

[241 Ghori, A., "Sequenccr GT-VSEQ/I: VLSI Design Vcrification Document," Special
Technical Report, CERL008-0O41.1, U.S. Army Strategic Defcnse Command.
Contract No. DASG6()-85-C-0041, Georgia Tech, CERL, March 26, 1989.

I
I

I 81

[25] Schwan, Karsten et. al., "Parallel Function Processor Run-time Kernel (DRAFT):
Software Design Document," Special Technical Report CERL003-0030.1, U.S.
Army Strategic Defense Command, Contract No. DASG60-85-C-0041, Georgia
Tech, CERL, June 28, 1989.

[26] Register, A., "High Speed Function Board GT-FFS/I: Hardware Design Document"
Special Technical Report CERLOO-0002.1, U.S. Army Strategic Defense
Command, Contract No. DASG60-95-C-0041, Georgia Tech, CFRL, August 5,
1988.

[27] Russ, S., "Instruction and Data Memory Unit GT-VDR/I: VLSI Design Document,"
CERL Technical Report, CERL008-0050.1, Georgia Tech, CERL, August 17,
1988.

[28] Russ, S., "Instruction and Data Memory unit GT-VDR/I: Design Verification
Document," Special Technical Report CERL008-0051.1, U.S. Army Strategic
Defense Command, Contract No. DASG60-85-C-0041, Georgia Tech, CERL,
August 17, 1988.

[29] Russ, S., "Floating/Fixed Point ALU Unit GT-VFPA/I: VLSI Design Document,"
CERL Technical Report, CERL008-0030.1, Georgia Tech, CERL, August 17,
1988.

[30] Russ, S., "Floating/Fixed Point ALU Unit GT-VFPA/I: VLSI Design Verfication
Document," Special Technical Report CERL008-0031.1, U.S. Army Strategic
Defense Command, Contract No. DASG60-85-C-0041, Georgia Tech, CERL
August 17, 1988.

[31] Shilling, John et. at., "Parallel Function Processor Programming Environment: Software
Design Document," Special technical Report 003-0020.1, U.S. Army Strategic
Defense Command, Contract No. DASG60-85-C-0041, Georgia Tech, CERL,
June 28, 1989.

[32] Tan, W.S., "Serial Network Interface GT-VSNI/I: Design Document," CERL Technical
Report CERL008-0010.1, Georgia Tech, CERL, May 12, 1988.

[33] Tan, W.S., "Serial Network Interface GT-VSNI/I: Design Verification Document,"
CERL Technical Report, CERL008-0011.1, Georgia Tech, CERL, May 12,
1988.

[34] Tan, W.S., "G&C High Speed Floating Point Processor Design," Special Technical
Report CERLO01-0001.1. U.S. Army Strategic Defense Command, Contract No.
DASG60-85-C-004 1, Georgia Tech, CERL, June 15, 1988.

[351 Tan, W.S., "G&C High Speed Floating Point Processor Compiler Design," Special
Technical Report CERL003-0001.1, U.S. Army Strategic De!cn.sc Comma:-.
Contract No. DASG60-85-C-0041, Georgia Tech, CERL, June 15, 1988.

[361 Tan, W.S., "Instruction Addrcss Generation GT-VI,\G/1: Prccrarmming %Iode
Decument." Special Technical Rcort CERLW,)8-)(,612. .U.S. Army Strategic

82

Defense Command, Contract No. DASG60-85-C-0041, Georgia Tech, CERL,
November 5, 1988.

[37] Tan, W.S., "Data Address Generation GT-VDAG: Programming Model Document," 3
Special Technical Report CERL008-00621.1, U.S. Army Strategic Defense
Command, Contract No. DASG60-85-C-0041, Georgia Tech, CERL, November
5, 1988.

[38] Tan, W.S., "VLSI Development Plan," Special Technical Report, CERL008-0140.1.
U.S. Army Strategic Defense Command, Contract No. DASG60-85-C-0041,
Georgia Tech, CERL, June 9, 1989.

[39] Levinson, L.M. et. al., "High Density Interconnects Using Laser Lithography,"
Proceedings of the National Electronics Packaging and Production Conference, I
March 6 - 9, 1989, Anaheim, CA, pp 1319 - 1328.

[40] _, "EXOSIM Version 1.0 Simulation Description, Volume 1," Interim
Technical Report, U.S. Army Strategic Defense Command, Contract No.
DASG60-88-C-0002, Coleman Research Corporation, 30 June 1989.

[41] ., "EXOSIM Version 1.0 Simulation Description, Volume 2," Interim
Technical Report, U.S. Army Strategic Defense Command, Contract No.
DASG60-88-C-0002, Coleman Research Corporation, 30 June 1989.

[42] -__ _ i'-EXOSIM Version 2.0 Simulation Description, Volume 1," Interim
[42] ''Technical Repor,-(tr/89-2176, U.S. Army Strategic Defense Command,

Contract No. DASG60-88-C-0002, Coleman Research Corporation, 30 October

1989.

[43] , "EXOSIM Version 2.0 Simulation Description, Volume 2," Interim
Technical Report, CHR/89-2176, U.S. Army Strategic Defense Command,
Contract No. DASG60-88-C-0002, Coleman Research Corporation, 30 October
1989.

[44] , "Parallel Function Processor Technical Data package," Vol. 1, Interim
Technical Report, U.S. Army Strategic Defense Command, Contract No.
DASG60-89-C-0142, Georgia Tech, CERL, March 31, 1990.

[451 _, "Parallel Function Processor Technical Data package," Vol.2, haterim
Technical Report, U.S. Army Strategic Defense Command, Contract No.
DASG60-89-C-0142, Georgia Tech, CERL, March 31, 1990. 3

[46] , "Parallel Function Processor Technical Data package," Vol.3, Interim
Technical Report, U.S. Army Strategic Defense Command, Contract No. 3
DASG60-89-C-0142, Georgia Tech, CERL, March 31, 1990.

[47] , Parallel Function Processor Technical Data package," Vol.4, Interim
Technical Report, U.S. Army Strategic Defcnse Command. Contract No.
DASG60-89-C-0i42, Georgia Tech, CERL,. March 1, 1990. I

I

